In silico analyses of metagenomes from human atherosclerotic plaque samples
نویسندگان
چکیده
BACKGROUND Through several observational and mechanistic studies, microbial infection is known to promote cardiovascular disease. Direct infection of the vessel wall, along with the cardiovascular risk factors, is hypothesized to play a key role in the atherogenesis by promoting an inflammatory response leading to endothelial dysfunction and generating a proatherogenic and prothrombotic environment ultimately leading to clinical manifestations of cardiovascular disease, e.g., acute myocardial infarction or stroke. There are many reports of microbial DNA isolation and even a few studies of viable microbes isolated from human atherosclerotic vessels. However, high-resolution investigation of microbial infectious agents from human vessels that may contribute to atherosclerosis is very limited. In spite of the progress in recent sequencing technologies, analyzing host-associated metagenomes remain a challenge. RESULTS To investigate microbiome diversity within human atherosclerotic tissue samples, we employed high-throughput metagenomic analysis on: (1) atherosclerotic plaques obtained from a group of patients who underwent endarterectomy due to recent transient cerebral ischemia or stroke. (2) Presumed stabile atherosclerotic plaques obtained from autopsy from a control group of patients who all died from causes not related to cardiovascular disease. Our data provides evidence that suggest a wide range of microbial agents in atherosclerotic plaques, and an intriguing new observation that shows these microbiota displayed differences between symptomatic and asymptomatic plaques as judged from the taxonomic profiles in these two groups of patients. Additionally, functional annotations reveal significant differences in basic metabolic and disease pathway signatures between these groups. CONCLUSIONS We demonstrate the feasibility of novel high-resolution techniques aimed at identification and characterization of microbial genomes in human atherosclerotic tissue samples. Our analysis suggests that distinct groups of microbial agents might play different roles during the development of atherosclerotic plaques. These findings may serve as a reference point for future studies in this area of research.
منابع مشابه
Effect of Helicobacter pylori DNA in human atherosclerotic plaques
Introduction: A number of studies have demonstrated that infectious mico organisms like helicobacter pylori may play a role in the process of atherosclerosis. We, here, aimed to investigate the effect of Helicobacter pylori DNA in atherosclerotic plaques in patients with coronary artery disease. Methods: In a cross-sectional study, 85 patients undergoing coronary artery bypass graft (CAB...
متن کاملIncreased ADRP expression in human atherosclerotic lesions correlates with plaque instability.
UNLABELLED Adipose differentiation-related protein (ADRP) is intrinsically associated with the surface of lipid droplets implicated in the development of atherosclerosis. We analyzed expression of ADRP in human popliteal artery plaques. Atherosclerotic plaque tissue from the popliteal artery was obtained from 18 patients undergoing lower extremity amputation for arteriosclerosis obliterans, and...
متن کاملSystemic atherosclerotic plaque vulnerability in patients with Coronary Artery Disease with a single Whole Body [FDG]PET-CT scan
Objective(s): Cardiovascular disease is a leading cause of morbimortality with over half cardiovascular events occurring in the asymptomatic population by traditional risk stratification. This preliminary study aimed to evaluate systemic plaque vulnerability in patients with prior Coronary Artery Disease (CAD) with a single Whole Body [FDG] PET-CT scan in terms of plaq...
متن کاملComparative analysis of the expression patterns of various TNFSF/TNFRSF in atherosclerotic plaques.
Members of the TNFSF/TNFRSF are involved in the immunoregulation of various immune reactions and diseases. Recently, LIGHT/TR2, GITRL/GITR, and TL1A/DR3 have been reported as playing roles in the inflammatory reactions in atherosclerosis, but a comparative analysis of these molecules has not been conducted. In order to compare their expression patterns, immunohistochemical analyses were perform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2015